首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational design of magnetically active trinuclear heterometallic complexes on the basis of 1,3,5-triazapentadiene ligands
Authors:Alyona A Starikova
Institution:1.Institute of Physical and Organic Chemistry at Southern Federal University,Rostov-on-Don,Russian Federation
Abstract:A series of trinuclear mixed-ligand complexes of iron(II) 2,6-di(pyrazol-1-yl)pyridine moieties with linkers on the basis of 1,3,5-triazapentadiene transition metal (M = Co, Ni, Cu, Zn) bischelates has computationally been designed using the density functional theory TPSSh/6-311++G(d,p) calculations. The systems possessing complete (M = Co, Ni) and partial (M = Cu, Zn) two-step spin-crossover phenomenon at ferrous ions have been revealed. Two spin-state switching mechanisms determining by spin-crossover at iron centers and configurational isomerism at cobalt ion may simultaneously occur in solution of corresponding heterometallic compound (M = Co). The nature of the exchange interactions between paramagnetic metal centers is controlled by variation of a metal in bischelate linker (M = Co, Ni, Cu, Zn). Energy and magnetic characteristics of electromeric forms of the complexes with nickel and copper central metal ions (M = Co, Ni) allow to consider them as promising candidates for the design of molecular switches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号