首页 | 本学科首页   官方微博 | 高级检索  
     


Dark matter constraints on gaugino/Higgsino masses in split supersymmetry and their implications at colliders
Authors:F. Wang  W. Wang  J.M. Yang
Affiliation:(1) Institute of Theoretical Physics, Academia Sinica, Beijing, 100080, P.R. China;(2) CCAST (World Laboratory), P.O. Box 8730, Beijing, 100080, P.R. China
Abstract:In split supersymmetry, gauginos and Higgsinos are the only supersymmetric particles that are potentially accessible at soon-to-be-completed colliders. While direct experimental research, such as the LEP and Tevatron experiments, have given robust lower bounds on the masses of these particles, cosmic dark matter can give some upper bounds and thus have important implications for research at future colliders. In this work we scrutinize such dark matter constraints and show the allowed mass range for charginos and neutralinos (the mass eigenstates of gauginos and Higgsinos). We find that the lightest chargino must be lighter than about 1 TeV under the popular assumption M1=M2/2 and about 2 or 3 TeV in other cases. The corresponding production rates of the lightest chargino at the CERN large hadron collider (LHC) and the International Linear Collider (ILC) are also given. While in some parts of the allowed region the chargino pair production rate can be larger than 1 pb at the LHC and 100 fb at the ILC, other parts of the region correspond to very small production rates, and thus there is no guarantee of finding the charginos of split supersymmetry at future colliders. PACS 14.80.Ly, 95.35.+d
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号