A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence |
| |
Authors: | M.W. Renfro S.D. Pack G.B. King N.M. Laurendeau |
| |
Affiliation: | (1) Flame Diagnostics Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288, USA, US |
| |
Abstract: | The measurement of fluorescence lifetimes is important for determining minor-species concentrations in flames when using linear laser-induced fluorescence (LIF). Applications of LIF to turbulent flames require that the quenching rate coefficient be determined in less than ∼100 μs. Moreover, the measurement technique must be insensitive to the existence of relatively large backgrounds, such as occur from flame emission. To meet these goals, we have recently developed a rapid, gated photon-counting technique, termed LIFTIME. However, for ultimate application to turbulent time-series measurements, LIFTIME must be extended to photon count rates which unfortunately result in nonlinear discriminator operation. In this paper, a correction technique is derived to permit quantitative measurements of fluorescence lifetimes and concentrations at sampling rates up to 4 kHz. The technique was tested against liquid samples having a known lifetime and is further shown to reproduce previous hydroxyl concentration measurements in a series of laminar flames with total photon count rates of up to ∼35 million detected photoelectrons per second. The fluorescence lifetimes and hydroxyl concentrations are shown to be measured with ∼10% accuracy (68% confidence interval) for sampling times as low as 250 μs. Received: 9 October 1998 / Revised version: 30 December 1998 / Published online: 28 April 1999 |
| |
Keywords: | PACS: 82.40 34.50 02.50 |
本文献已被 SpringerLink 等数据库收录! |
|