首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optical properties of zinc peroxide and zinc oxide multilayer nanohybrid films
Authors:Dániel Seb?k  Imre Dékány
Institution:a Department of Colloid Chemistry, University of Szeged, H-6720 Szeged, Aradi v.t.1., Hungary
b Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, H-6720 Szeged, Aradi v.t.1., Hungary
Abstract:Zinc peroxide and zinc oxide nanoparticles were prepared and self-assembled hybrid nanolayers were built up using layer-by-layer (LbL) technique on the surface of glass substrate using the layer silicate hectorite and an anionic polyelectrolyte, sodium polystyrene sulfonate (PSS). Light absorption, interference and morphological properties of the hybrid films were studied to determine their thickness and refractive index. The influence of layer silicates and polymers on the self-organizing properties of ZnO2 and ZnO nanoparticles was examined. X-ray diffraction revealed that ZnO2 powders decomposed to ZnO (zincite phase) at relatively low temperatures (less than 200 °C). The optical thickness of the films ranged from 190 to 750 nm and increased linearly with the number of layers. Band gap energies of the ZnO2/hectorite films were independent from the layer thickness and were larger than that of pure ZnO2 nanodispersion. Decomposition of ZnO2 to ZnO and O2 at 400 °C resulted in the decrease of the band gap energy from 3.75 to 3.3 eV. Concomitantly, the refractive index increased in correlation with the formation of the zincite ZnO phase. In contrast, the band gap energies of the ZnO2/PSS hybrid films decreased with the thickness of the nanohybrid layers. We ascribe this phenomenon to the steric stabilization of primary ZnO2 particles present in the confined space between adjacent layers of hectorite sheets.
Keywords:ZnO2 nanoparticles  ZnO nanohybrid films  Optical properties  Optical interference  Band gap energy  Self-assembly
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号