首页 | 本学科首页   官方微博 | 高级检索  
     


A Navier–Stokes solver for complex three-dimensional turbulent flows adopting non-linear modelling of the Reynolds stresses
Authors:V. Botte  A. Tourlidakis  R. L. Elder
Abstract:A non-linear modelling of the Reynolds stresses has been incorporated into a Navier–Stokes solver for complex three-dimensional geometries. A k–ε model, adopting a modelling of the turbulent transport which is not based on the eddy viscosity, has been written in generalised co-ordinates and solved with a finite volume approach, using both a GMRES solver and a direct solver for the solution of the linear systems of equations. An additional term, quadratic in the main strain rate, has been introduced into the modelling of the Reynolds stresses to the basic Boussinesq's form; the corresponding constant has been evaluated through comparison with the experimental data. The computational procedure is implemented for the flow analysis in a 90° square section bend and the obtained results show that with the non-linear modelling a much better agreement with the measured data is obtained, both for the velocity and the pressure. The importance of the convection scheme is also discussed, showing how the effect of the non-linear correction added to the Reynolds stresses is effectively hidden by the additional numerical diffusion introduced by a low-order convection scheme as the first-order upwind scheme, thus making the use of higher order schemes necessary. © 1998 John Wiley & Sons, Ltd.
Keywords:non-linear Reynolds stresses  k–  ε   turbulence model  higher-order convective scheme  pressure correction  direct sparse matrix solver  incompressible duct flows
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号