首页 | 本学科首页   官方微博 | 高级检索  
     


Stationary analysis of the shortest queue problem
Authors:Plinio S. Dester  Christine Fricker  Danielle Tibi
Affiliation:1.Department of ECE,Indian Institute of Science,Bangalore,India
Abstract:In this paper, we derive an approximation for throughput of TCP Compound connections under random losses. Throughput expressions for TCP Compound under a deterministic loss model exist in the literature. These are obtained assuming that the window sizes are continuous, i.e., a fluid behavior is assumed. We validate this model theoretically. We show that under the deterministic loss model, the TCP window evolution for TCP Compound is asymptotically periodic and is independent of the initial window size. We then consider the case when packets are lost randomly and independently of each other. We discuss Markov chain models to analyze performance of TCP in this scenario. We use insights from the deterministic loss model to get an appropriate scaling for the window size process and show that these scaled processes, indexed by p, the packet error rate, converge to a limit Markov chain process as p goes to 0. We show the existence and uniqueness of the stationary distribution for this limit process. Using the stationary distribution for the limit process, we obtain approximations for throughput, under random losses, for TCP Compound when packet error rates are small. We compare our results with ns2 simulations which show a good match and a better approximation than the fluid model at low p.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号