首页 | 本学科首页   官方微博 | 高级检索  
     


The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata
Authors:Bing Feng  Bo Quan
Affiliation:Beijing Institute of Radiation Medicine, Beijing 100850, China
Abstract:In previous work, we studied and reported that an enzyme from Curvularia lunata 3.4381 had the novel specificity to hydrolyze the terminal rhamnosyl at C-3 position of steroidal saponin and obtained four transformed products; the enzyme was purified and ascertained as glucoamylase (EC 3.2.1.3 GA). In this work, the enzyme exhibiting steroidal saponin-rhamnosidase activity was systematically studied on 21 steroidal saponins and 6 ginsenosides. The results showed that the α-1,2-linked end-rhamnosyl residues at C-3 position of steroidal saponins could be hydrolyzed to corresponding secondary steroidal saponins, among which 18 compounds were isolated and identified, including 3 new secondary compounds. For the furostanosides having glucosyl residues at the C-26 position, hydrolysis occurred first at end-rhamnosyl at C-3 position to produce secondary furostanosides. The reaction of hydrolyzing glucosyl at C-26 position depended considerably on longer reaction times yielding the corresponding secondary spirostanosides (without rhamnosyl and glucosyl residues). The enzyme had the strict specificity for the terminal α-1,2-linked rhamnosyl residues of linear chain, or the terminal α-1,2-linked rhamnosyl residues with branched chain of 1,4-linked glycosyl residues of sugar chain at C-3 position of steroidal saponins, it was not specific for different aglycones, different glycons, and the number of glycon of sugar chain of steroidal saponin. The end-rhamnosyl of ginsenosides and p-nitrophenyl-α-l-rhamnopyranoside (pNPR) could not be hydrolyzed by the enzyme from C. lunata.
Keywords:Glucoamylase   Substrate specificity   Curvularia lunata   Furostanoside   Spirostanoside
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号