首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spontaneous translation of nanodroplet over a heterogeneous surface due to thermal cycles: role of solid–liquid interfacial fluctuations
Authors:Utkarsh Saxena  Shubham Chouksey
Institution:Indian Institute of Technology, Gandhinagar, Gujarat, India
Abstract:ABSTRACT

We study the molecular-scale features of the solid surface that result in the spontaneous motion of a nanodroplet due to the periodic variation of temperature. We first employ a thermodynamic model to predict the variation of solid–fluid interfacial properties that can result in the above motion. The model identifies a composite (surface couple) made of two surfaces that are characterised by a large difference between the entropic parts of the solid–liquid interfacial free energies. In order to understand the molecular-scale features of the two surfaces that may form a surface couple, we performed grand canonical Monte Carlo simulations of Lennard Jones fluid and crystalline surfaces made of Lennard Jones-like atoms. We then used the cumulant expansions of the perturbation formulas to divide the interfacial entropy into two parts: The one that is directly affected by the solid–fluid attraction (direct part), and the other (indirect part) that is indirectly affected by the solid–fluid attraction via the alteration of interfacial fluctuations. Our results indicate that two surfaces form a surface couple if the differences between their chemical natures lead to large differences in the indirect part of the interfacial entropy, while the direct part remains relatively unaffected.
Keywords:Solid–liquid interface  thermodynamic cycle  interfacial fluctuations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号