首页 | 本学科首页   官方微博 | 高级检索  
     

基于无机元素分析对地理标志五常大米鉴别技术的研究
引用本文:黎永乐,郑彦婕,汤璐,苏志义,熊岑. 基于无机元素分析对地理标志五常大米鉴别技术的研究[J]. 光谱学与光谱分析, 2016, 36(3): 834-837. DOI: 10.3964/j.issn.1000-0593(2016)03-0834-04
作者姓名:黎永乐  郑彦婕  汤璐  苏志义  熊岑
作者单位:深圳市计量质量检测研究院,广州 深圳 518131
基金项目:国家质量监督检验检疫总局公益性行业科研专项经费“双打”专项项目任务计划基金项目(2012104019-6)
摘    要:五常大米是我国著名地理标志产品之一,品质高、产量低,导致制假售假的现象严重。为维护五常大米的品牌形象和消费者利益,急需一种有效鉴别五常大米的方法。应用电感耦合等离子体光谱及电感耦合等离子体质谱测定大米中无机元素含量,结合主成分分析(PCA)、Fisher判别、人工神经网络(ANN)对五常大米鉴别模型进行研究。结果表明:PCA法对样品的分类效果较差,采用Fisher判别和ANN则可准确识别五常地区的大米样品和其他地区的大米样品。Fisher判别法对校正集和验证集样品平均准确识别率分别为93.5%,而ANN法对同样的校正集和验证集样品的平均准确识别率为96.4%,优于Fisher判别法。可准确对五常大米进行鉴别,为该产品的地理标志保护提供了一种技术手段。

关 键 词:地理标志五常大米  电感耦合等离子体光谱  电感耦合等离子体质谱  无机元素  主成分分析  Fisher判别  人工神经网络   
收稿时间:2014-10-18

Study on the Identification of Geographical Indication Wuchang Rice Based on the Content of Inorganic Elements
LI Yong-le,ZHENG Yan-jie,TANG Lu,SU Zhi-yi,XIONG Cen. Study on the Identification of Geographical Indication Wuchang Rice Based on the Content of Inorganic Elements[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 834-837. DOI: 10.3964/j.issn.1000-0593(2016)03-0834-04
Authors:LI Yong-le  ZHENG Yan-jie  TANG Lu  SU Zhi-yi  XIONG Cen
Affiliation:Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518131, China
Abstract:Wuchang rice is a geographical indication product in China. Due to its high quality and low production, the phenomenon of fake is more and more serious. An effective identification method of Wuchang rice is urgent needed, for the maintenance of its brand image and interest of consumers. Base on the content of inorganic elements which are analyzed by ICP-AES and ICP-MS in rice, the identification model of Wuchang rice is studied combining with principal component analysis (PCA), Fisher discrimination and artificial neural network (ANN) in this paper. The effect on the identification of samples is poor through PCA, while the samples from Wuchang area and other areas can be identified accurately through Fisher discrimination and ANN. The average accurate identification ratio of training and verification set through Fisher discrimination is 93.5%, while the average accurate identification ratio through ANN is 96.4%. The ability to identify of ANN is better than Fisher discrimination. Wuchang rice can be identified accurately through the result of this research which provides a technology for the protection of geographical indications of this product.
Keywords:Geographical indication Wuchang rice  ICP-AES  ICP-MS  Inorganic element  Principal component analysis  Fisher discrimination  Artificial neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号