首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stabilization of beam parametric vibrations with shear deformations and rotary inertia effects
Institution:Institute of Machine Design Fundamentals, Warsaw University of Technology, Narbutta 84, 02-524 Warszawa, Poland
Abstract:The purpose of this theoretical work is to present a stabilization problem of beam with shear deformations and rotary inertia effects. A velocity feedback and particular polarization profiles of piezoelectric sensors and actuators are introduced. The structure is described by partial differential equations with time-dependent coefficient including transverse and rotary inertia terms, general deformation state with interlaminar shear strains. The first order deformation theory is utilized to investigate beam vibrations. The beam motion is described by the transverse displacement and the slope. The almost sure stochastic stability criteria of the beam equilibrium are derived using the Liapunov direct method. If the axial force is described by the stationary and continuous with probability one process the classic differentiation rule can be applied to calculate the time-derivative of functional. The particular problem of beam stabilization due to the Gaussian and harmonic forces is analyzed in details. The influence of the shear deformations, rotary inertia effects and the gain factors on dynamic stability regions is shown.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号