首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems
Institution:1. School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;3. Ocean Engineering Joint Research Center of DUT-UWA, China\n;4. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Abstract:The dynamic solution of a multilayered orthotropic piezoelectric infinite hollow cylinder in the state of axisymmetric plane strain is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and the other is dynamic. The quasi-static part is derived by the state space method, and the dynamic part is obtained by the separation of variables method coupled with the initial parameter method as well as the orthogonal expansion technique. By using the obtained quasi-static and dynamic parts and the electric boundary conditions as well as the electric continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived, which can be solved successfully by means of the interpolation method. The displacements, stresses and electric potentials are finally obtained. The present method is suitable for a multilayered orthotropic piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric dynamic loads. Numerical results are finally presented and discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号