Homogeneous Bose gas of dipolar molecules in the mean field approximation |
| |
Authors: | Zillich Robert E Whaley K Birgitta |
| |
Affiliation: | Institute for Theoretical Physics, Johannes Kepler Universit?t Linz, Altenbergerstra?e 69, A-4040 Linz, Austria. |
| |
Abstract: | We present a mean field analysis of the effects of molecular rotation on the excitation spectrum and stability of ultracold dipolar gases. For an unpolarized homogeneous gas interacting with a pure dipole-dipole interaction, we find that for the rotational state L = 1 the dipole-dipole interaction causes a splitting of the translation-rotation energy levels into a single M = 0 and a doubly degenerate M = ±1 excitation. For all other rotational states, the dipole-dipole interaction does not lead to coupling of translations and rotations and therefore has no effect on the rotational degeneracy of the excitations. The addition of arbitrarily small electric fields is found to introduce instabilities similar to those known to arise in the fully polarized dipolar gas. As in the case of a fully polarized gas, addition of a large enough short range repulsive potential is seen to stabilize the system, with the critical value of the repulsive interaction required for stabilization being larger when rotations are included. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|