首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical description of glass-forming alloys with chemical interaction: Application to Al-R systems
Authors:R.E. Ryltsev  L.D. Son
Affiliation:Institute of Metallurgy of Ural Division of Russian Academy of Sciences, Amudsena str. 101, Yekaterinburg, Russia
Abstract:The statistical model for describing network-forming systems, developed in our previous works, is applied to study of metallic alloys with chemical bonding. The model is based on the representation of the sum of statistical weights over all possible configurations for a thermoreversible network in the form of a functional integral over a scalar field. The mean-field solution of the model is derived, and for particular case of a binary alloy having single element of chemical short-range order A2B-type, thermodynamic and structural properties have been analyzed. This analysis allows to plot the temperature-concentration phase diagram of the model representing two immiscibility gap meeting in the distectic point. It is shown that at some temperatures and concentrations, geometry percolation of the network of chemical bonds and thus a sol-gel transition may take place. The critical percolation line was plotted in common with phase diagram. Then, the structural transitions, glass-forming ability and magnetic properties of Al-R alloys are discussed in the frames of this conception. It is proposed that the range of easy glass formation is confined on the left by the minimal concentration for the sol-gel transition and on the right by the concentration corresponding to the fractal-to-Euclidian crossover in the structure of percolation cluster. Finally, the abnormal growth of Al-REM magnetic susceptibility occurring above melting point of Al2R compound is also explained.
Keywords:Network-forming systems   Chemical interaction   Percolation   Glass-forming systems   Al-REM alloys   Magnetic susceptibility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号