首页 | 本学科首页   官方微博 | 高级检索  
     


Palladium nanoparticles immobilized on EDTA‐modified Fe3O4@SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross‐coupling reactions
Authors:Mohsen Esmaeilpour  Saeed Zahmatkesh  Nafiseh Fahimi  Mehran Nosratabadi
Affiliation:1. Chemistry Department, College of Science, Shiraz University, Shiraz, Iran;2. Department of Science, Payame Noor University (PNU), Tehran, Islamic Republic of Iran;3. Department of Chemistry, Payame Noor University, Estahban, Iran
Abstract:In this study, a novel heterogeneous palladium catalyst was synthesized by anchoring palladium onto ethylenediaminetetraacetic acid (EDTA)‐coated Fe3O4@SiO2 magnetic nanocomposite and used for the Suzuki and Sonogashira cross‐coupling reactions. The properties of the magnetic catalyst were characterized by FT‐IR, XRD, TEM, FE‐SEM, DLS EDX, XPS, N2 adsorption‐desorption isotherm analysis, TGA, VSM, elemental analysis and the loading level of Pd in catalyst was measured to be 0.51 mmol/g by ICP. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes with phenylboronic acid without any additive or ligand under green conditions. Furthermore, we have reported this recyclable catalytic system for Sonogashira cross‐coupling reactions of various aryl halides (I, Br, Cl) under copper and ligand‐free conditions in the presence of DMF/H2O (1:2/v:v) as a solvent. The magnetic catalyst could also be separated by an external magnet and reused six times without any significant loss of activity.
Keywords:aryl halides  magnetic heterogeneous catalyst  palladium  sonogashira‐hagihara reaction  uzuki‐Miyaura reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号