首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Specific reversible melting of polyethylene
Authors:R Androsch  B Wunderlich
Abstract:The specific reversibility of the crystallization and melting of linear and branched polyethylene has been determined as function of temperature by temperature‐modulated differential scanning calorimetry. The specific reversibility of crystallization and melting is defined as the ratio of the reversible enthalpy to the total enthalpy of the transition, both measured at the same temperature. This definition emphasizes a close connection between the reversible and irreversible parts of the transition. As one would expect, the crystal‐to‐melt transition of a given portion of a sample can only be reversible at a temperature close to its own temperature of irreversible melting. Reversible melting is absent at temperatures far from irreversible melting, and this is usually seen by experimentation as its zero‐entropy production melting temperature. The reversible change in the fold length, in contrast, is observed far from the melting temperature of the crystal involved. The specific reversibility of the crystallization and melting of polyethylene crystals may exceed 50% outside the temperature range of the main crystallization and melting. The specific reversibility seems rather independent of the branch concentration, and this points to similar mechanisms of the reversible transition in linear polyethylene of high crystallinity and in branched polyethylene of low crystallinity. The reversible transition is due to a local equilibrium at the crystal surface and is, therefore, largely independent of the overall morphology of the sample. In this study, a model is developed that is based on partial molecular melting, which avoids the need of molecular nucleation and permits, therefore, reversible melting as seen for small molecules in the presence of crystal nuclei. It provides an explanation of the rather large number of the crystals that may participate in reversible melting and allows a connection to the fully reversible crystallization of paraffins and the fully irreversible crystallization of extended‐chain crystals of high crystallinity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2157–2173, 2003
Keywords:reversible melting and crystallization of polymers  polyethylene (PE)  temperature‐modulated differential scanning calorimetry (TMDSC)  specific reversibility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号