Abstract: | Dipole‐allowed transitions have been studied for the first few members of the Si isoelectronic sequence. Transition energies, oscillator strengths, transition probabilities and quantum defect values have been estimated for the low‐ and high‐lying excited states of s and d symmetries up to the principal quantum number n=7 for these 3p open shell ions from P+ to Cr10+. Time‐dependent coupled Hartree–Fock (TDCHF) theory has been utilized to calculate such transition properties. Most of the results for transition energies, oscillator strengths, and transition probabilities for higher excited states are new. The transition energies for low‐lying excited states agree well with experimental data wherever available. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001 |