Abstract: | HoClTe2O5: A Telluriumdioxide‐rich Holmium(III) Chloride Oxotellurate(IV) While attempting to synthesize anionically derivatized holmium oxotellurates by reacting holmium chloride (HoCl3) with tellurium oxide (TeO3; molar ratio 1 : 3, 800°C 10 d) in evacuated silica ampoules, transparent, greenish yellow and coarse single crystals of holmium(III) chloride oxotellurate(IV) HoClTe2O5 (triclinic, P1; a = 762.07(6), b = 796.79(6), c = 1010.36(8) pm, α = 100.987(4), ß = 99.358(4), γ = 91.719(4)°; Z = 4) were obtained. The crystal structure contains eightfold coordinated (Ho1)3+ (only surrounded by oxygen atoms) and sevenfold coordinated (Ho2)3+ cations (surrounded by one chloride and six oxide anions). Each sort of holmium polyhedra convenes independently to chains along [100] by edge‐sharing which again combine alternately via O6 and O9 to form 2{[Ho2O10(Cl1)]15—} layers parallel (001). Each of the four crystallographically different Te4+ cations are surrounded by three close oxygen atoms (d(Te—O) = 188 — 195 pm) and always one more situated further away. The stereochemical activity of the non‐bonding electron pairs (“lone pairs”) leads to ψ1‐trigonal bipyramidal coordination figures. The ψ1‐tetrahedral [TeO3]2— basic units form discrete [Te2O5]2— doubles with ecliptic conformation which are arranged in a fish‐bone pattern parallel to (001) on both sides of the 2{[Ho2O10Cl]15—} layers. The coherence of the 2{[Ho2(Cl1)Te4O10]+} layers is exclusively maintained via Cl2—Te1 contacts with an extraordinary long distance of 335 pm. As (Cl1)— belongs to the coordination sphere of (Ho2)3+ and (Cl2)— is only surrounded by Te4+, the compound should be correctly named holmium(III) chloride oxochlorotellurate(IV) Ho2Cl[Te4O10Cl] (Z = 2). |