首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simple <Emphasis Type="Italic">b</Emphasis> ions have cyclic oxazolone structures. A neutralization-reionization mass spectrometric and computational study of oxazolone radicals
Authors:Xiaohong?Chen  Email author" target="_blank">Franti?ek?Turec?ekEmail author
Institution:Department of Chemistry, University of Washington, Seattle, 98195, USA.
Abstract:The 2-methyloxazol-5-on-2-yl radical (3) and its deuterium labeled analogs were generated in the gas-phase by femtosecond electron-transfer and studied by neutralization-reionization mass spectrometry and quantum chemical calculations. Radical 3 undergoes fast dissociation by ring opening and elimination of CO and CH(3)CO. Loss of hydrogen is less abundant and involves hydrogen atoms from both the ring and side-chain positions. The experimental results are corroborated by the analysis of the potential energy surface of the ground electronic state in 3 using density functional, perturbational, and coupled-cluster theories up to CCSD(T) and extrapolated to the 6-311 ++ G(3df,2p) basis set. RRKM calculations of radical dissociations gave branching ratios for loss of CO and H that were k(CO)/k(H) > 10 over an 80-300 kJ mol(-1) range of internal energies. The driving force for the dissociations of 3 is provided by large Franck-Condon effects on vertical neutralization and possibly from involvement of excited electronic states. Calculations also provided the adiabatic ionization energy of 3, IE(adiab) = 5.48 eV and vertical recombination energy of cation 3(+), RE(vert) = 4.70 eV. The present results strongly indicate that oxazolone structures can explain fragmentations of b-type peptide ions upon electron capture, contrary to previous speculations.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号