首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of substrate-supported membranes from mixtures of long- and short-chain phospholipids
Authors:Morigaki Kenichi  Kimura Shigeki  Okada Keisuke  Kawasaki Takashi  Kawasaki Kazunori
Affiliation:Research Center for Environmental Genomics, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501 Japan. morigaki@port.kobe-u.ac.jp
Abstract:We studied the formation of substrate-supported planar phospholipid bilayers (SPBs) on glass and silica from mixtures of long- and short-chain phospholipids to assess the effects of detergent additives on SPB formation. 1,2-Hexyanoyl-sn-glycero-3-phosphocholine (DHPC-C6) and 1,2-heptanoyl-sn-glycero-3-phosphocholine (DHPC-C7) were chosen as short-chain phospholipids. 1-Palmitoyl-2-oleol-sn-glycero-3-phosphocholine (POPC) was used as a model long-chain phospholipid. Kinetic studies by quartz crystal microbalance with dissipation monitoring (QCM-D) showed that the presence of short-chain phospholipids significantly accelerated the formation of SPBs. Rapid rinsing with a buffer solution did not change the adsorbed mass on the surface if POPC/DHPC-C6 mixtures were used below the critical micelle concentration (cmc) of DHPC-C6, indicating that an SPB composed of POPC molecules remained on the surface. Fluorescence microscopy observation showed homogeneous SPBs, and the fluorescence recovery after photobleaching (FRAP) measurements gave a diffusion coefficient comparable to that for SPBs formed from POPC vesicles. However, mixtures of POPC/DHPC-C7 resulted in a smaller mass of lipid adsorption on the substrate. FRAP measurements also yielded significantly smaller diffusion coefficients, suggesting the presence of defects. The different behaviors for DHPC-C6 and DHPC-C7 point to the dual roles of detergents to enhance the formation of SPBs and to destabilize them, depending on their structures and aggregation properties.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号