首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theory of macrodispersion for the scale-up problem
Authors:J Glimm  W B Lindquist  F Pereira  Q Zhang
Institution:(1) Department of Applied Mathematics and Statistics, The University of Stony Brook, 11794-3600 Stony Brook, NY, USA
Abstract:Dispersion is the result, observable on large length scales, of events which are random on small length scales. When the length scale on which the randomness operates is not small, relative to the observations, then classical dispersion theory fails. The scale up problem refers to situations in which randomness occurs on all length scales, and for which classical dispersion theory necessarily fails. The purpose of this article is to present non-Fickian, theories of dispersion, which do not assume a scale separation between the randomness and the observed consequences, and which do not assume a single length scale.Porous media flow properties are heterogeneous on all length scales. The geological variation on length scales below the observational length scale can be regarded as unknown and unknowable, and thus as a random variable.We develop a systematic theory relating scaling behavior of the geological heterogeneity to the scaling behavior of the fluid dispersivity. Three qualitatively distinct regimes (Fickian, non-Fickian and nonrenormalizable) are found. The theory gives consistent answers within several distinct analytic approximations, and with numerical simulation of the equations of porous media flow.Comparison to field data is made. The use of Kriging to generate constrained ensembles for conditional simulation is discussed.
Keywords:Scale up  dispersion  porous media  random field
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号