首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interactions of collagen and cellulose in their blends with 1-ethyl-3-methylimidazolium acetate as solvent
Authors:Min Zhang  Cuicui Ding  Liulian Huang  Lihui Chen  Haiyang Yang
Institution:1. College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
2. The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, People’s Republic of China
Abstract:Collagen/cellulose blended solutions with collagen/cellulose mass ratio (Col/Cel) of 0, 1/40, 1/20, 1/10 and 1/5 were prepared using Emim]Ac as solvent. The interactions between the two polymers before and after regeneration were investigated. In steady shear flow, all of the experimental viscosity values were greater than those of the estimated values calculated from the log-additivity rule for each sample, suggesting interactions between the two polymers in solutions. All solutions exhibited shear thinning behavior and the flow curves could be described by Cross model. Zero shear viscosity (η 0) versus Col/Cel was examined and a linear increase (from 8.73 to 16.39 Pa·s) can be observed for η 0 as Col/Cel ≤ 1/10, while there was only a slight increase (from 16.39 to 18.42 Pa·s) in η 0 as Col/Cel increased to 1/5. Dynamic rheology results suggested the existence of aggregates in solution with Col/Cel = 1/10. Furthermore, the activation energy of solution was 84.5 kJ mol?1 as Col/Cel = 1/10, higher than that of cellulose solution (44.2 kJ mol?1). Regenerated films were prepared and characterized to trace back the interactions between the two polymers in Emim]Ac. Fourier transform infrared spectroscopy indicated the hydrogen-bond interaction between collagen and cellulose in films. The denaturation temperature of collagen in films with Col/Cel ≤ 1/10 could be improved, but it was decreased with the increase of collagen content, and finally was reduced to be close to that of collagen as Col/Cel = 1/5. The features of dynamic mechanical analysis for films were indicative of the lack of homogeneity between collagen and cellulose as Col/Cel = 1/5. Atomic force microscopy images further confirmed the phase-separation when Col/Cel = 1/5.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号