首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fabrication of cellulose-based scaffold with microarchitecture using a leaching technique for biomedical applications
Authors:Eun Joo Shin  Soon Mo Choi  Deepti Singh  Sun Mi Zo  Yang Hun Lee  Joon Ho Kim  Sung Soo Han
Institution:1. Department of Organic Material and Polymer Engineering, Dong-A University, Pusan, 604-714, South Korea
2. Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, 280, Daehak-Ro, Gyeongsan, 712-749, South Korea
Abstract:Providing a conclusive microenvironment for cell growth, proliferation and differentiation is a major developmental strategy in the tissue engineering and regenerative medicine. This is usually achieved in the laboratory by culturing cells in three-dimensional polymer-based scaffolding materials. Here, we describe the fabrication of a cellulose scaffold for tissue engineering purposes from cellulose fiber using a salt leaching method. The 1-n-allyl-3-methylimidazolium chloride (AmimCl) IL was used as a solvent for cellulose. The leaching methodology used in this study offers the unique advantage of providing effective control of scaffold porosity by simply varying cellulose concentration. Morphologic testing of the scaffolds produced revealed pore sizes of 200–500 μm. In addition, the scaffolds had high water adsorption rates and slow degradation rates. To further investigate the suitability of these scaffolds for tissue engineering applications, biocompatibility was checked using an MTT assay and confirmed by Live/Dead® viability testing. In addition, scanning electron microscopy and DAPI studies and in vivo experiment demonstrated the ability of cells to attach to scaffold surfaces, and a biocompatibility of matrices with cells, respectively. The authors describe the environmentally friendly fabrication of a novel cellulose-based tissue engineering scaffold.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号