Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water |
| |
Authors: | Hitomi Miyamoto Rosnah Abdullah Hayato Tokimura Daichi Hayakawa Kazuyoshi Ueda Shiro Saka |
| |
Affiliation: | 1. Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan 2. Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
|
| |
Abstract: | The dissociation behavior of the crystalline cellulose polymorphs Iβ, II, IIII, and IVI (Cell Iβ, etc.) at 503 K and 100 bar was studied by molecular dynamics simulation, and the mechanism of the experimental liquefaction during treatment with hot-compressed water was elucidated. The results showed that the mini-crystals of Cell Iβ and Cell IVI exhibited similar resistance to dissociation, which implies the occurrence of crystal transformation from Cell IVI to Cell I. On the other hand, the mini-crystal of Cell II gradually dissociated into the water environment with the progress of time in the simulation. The water molecules gradually penetrated the Cell II crystal, especially along the (1 (overline{1}) 0) crystal plane. In contrast, the dissolution behavior differed for the surface and the core areas of the mini-crystal of Cell IIII. The cellulose chains on the surface were dissociated into the water environment, whereas the ordered structure of the chains in the core region was maintained for the entire simulation period. The detailed investigation showed that the core part of Cell IIII was transformed into Cell I at an early stage of the simulation: Cell I is resistant to dissociation of the structure even in the hot-compressed water environment. It can be confirmed that the stability of these four crystals under high temperature and pressure conditions follows the order: Cell II < IIII < IVI ≈ Iβ. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|