首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol,nano-hydroxyapatite and cellulose nanocrystals
Authors:Anuj Kumar  Yuvraj Singh Negi  Veena Choudhary  Nishi Kant Bhardwaj
Institution:1. Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
2. Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
3. Avantha Centre for Industrial Research and Development, Yamuna Nagar, Haryana, India
Abstract:In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号