首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of Entry-Region Flow in Open-Cell Metal Foam and Experimental Validation
Authors:Nihad Dukhan  Ahmed S. Suleiman
Affiliation:1. Department of Mechanical Engineering, University of Detroit Mercy, Detroit, MI, 48221, USA
Abstract:Open-cell metal foam is distinguished from traditional porous media by its very high porosities (often greater than 90 %), and its web-like open structure and good permeability. As such, the foam is a very attractive core for many engineered systems, e.g., heat exchangers, filtration devices, catalysts, and reactors. The flow field inside the foam is rather complex due to flow reversal and vigorous mixing. This complexity is increased by the possible presence of an entry region. The entrance region in metal foam is usually underestimated and ignored, just like its counterpart in traditional porous media. In this paper, the actual entry length is determined by simulation and direct experiment on commercial open-cell aluminum foam. It is shown to be dependent on flow velocity and to reach a constant value for higher velocities. The complex and intrinsically random architecture of the foam is idealized using a unit geometrical model, in order to numerically investigate the flow field and pressure drop inside the foam. The Navier–Stokes equations are solved directly, and velocity and pressure fields are obtained for various approach velocities using a commercial numerical package. The entry length is ascertained from the behavior of the velocity field close to the entrance. Comparisons to experimental data were also carried out. The commercial foam that was used in the experiment had 10 ppi and porosity of 91.2 %. Air was forced to flow inside the foam using an open-loop wind tunnel. Good qualitative agreement between the modeling and experimental results are obtained. The agreement lends confidence to the modeling approach and the determined entry length.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号