首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanistic insights into the proline-directed enantioselective heterogeneous hydrogenation of isophorone
Authors:McIntosh Alexander I  Watson David J  Lambert Richard M
Institution:Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Abstract:The adsorption rates onto a range of platinum single-crystal surfaces of key species involved in the proline-directed heterogeneous enantioselective hydrogenation of isophorone were investigated by electrochemical means. Specifically, the uptakes of the prochiral reactant (isophorone), the chiral hydrogenation product (3,3,5-trimethylcyclohexanone), and the chiral directing agent ((R)- and (S)-proline) were examined. The effects of R,S chiral kink sites on the adsorption of (R,S)-proline were also studied. The reactant adsorbs approximately 105 times faster than the chiral modifier so that under conditions of competitive adsorption the latter is entirely excluded from the metal surface. Supplementary displacement and reaction rate measurements carried out with practical Pd/carbon catalysts show that under certain reaction conditions isophorone quickly displaces preadsorbed proline from the metal surface. Thus both kinetics and thermodynamics ensure that the chiral modifier can play no role in any surface-mediated process that leads to enantiodifferentiation. These results are fully consistent with the recent proposal1 that the crucial step leading to enantiodifferentiation occurs in the solution phase and not at the metal surface. In addition, it is found that there is no preferred diastereomeric interaction between (R,S)-proline and R,S step kink sites on Pt{643} and Pt{976}, implying that such sites do not play a role in determining the catalytic behavior of supported metal nanoparticles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号