首页 | 本学科首页   官方微博 | 高级检索  
     检索      

真空辅助法合成Fe_3(PO_4)_2·8H_2O及对LiFePO_4/C结构、形貌和电化学性能的影响(英文)
引用本文:任建新,胡有坤,郭孝东,唐艳,钟本和,刘恒.真空辅助法合成Fe_3(PO_4)_2·8H_2O及对LiFePO_4/C结构、形貌和电化学性能的影响(英文)[J].物理化学学报,2014,30(5):866-872.
作者姓名:任建新  胡有坤  郭孝东  唐艳  钟本和  刘恒
作者单位:1.College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;2.College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
基金项目:四川大学青年基金(2011SCU11081)及教育部高校博士学科点科研基金(20120181120103)资助项目
摘    要:采用了一种真空辅助沉淀法制备Fe3(PO4)2·8H2O,并以此进一步合成粒径尺寸在400 nm左右LiFePO4颗粒.研究了Fe3(PO4)2·8H2O对于磷酸铁锂的形貌、结构、电化学性能的影响.X射线衍射(XRD)结果表明,真空辅助制备的Fe3(PO4)2·8H2O具有高纯度,以此制备的LiFePO4具有高结晶度和纯度.扫描电子显微镜(SEM)结果表明,真空辅助制备的Fe3(PO4)2·8H2O具有未完全发育的颗粒,以此制备的LiFePO4均匀无硬团聚.透射电子显微镜(TEM)结果显示真空辅助制备的LiFePO4包覆一层均匀的碳.真空制备的LiFePO4显示了优异的电化学性能,在1C、10C、20C倍率下的容量分别为140、113、100 mAh·g-1.真空制备的LiFePO4的循环伏安曲线显示了小的极化电压和尖锐的氧化峰.充放电平台曲线表明真空对LiFePO4高倍率性能起到重要作用.电化学阻抗谱(EIS)计算结果显示,真空和非真空制备的LiFePO4的锂离子扩散系数分别为1.42×10-13和4.22×10-14cm2·s-1,说明真空辅助能够提高LiFePO4的扩散系数.

关 键 词:Fe3(PO4)2·  8H2O  LiFePO4/C  真空辅助  沉淀  高倍率  
收稿时间:2013-12-16
修稿时间:2014-03-04

Vacuum-Assisted Synthesis of Fe3(PO4)2·8H2O and Its Influence on Structure,Morphology and Electrochemical Performance of LiFePO4/C
REN Jian-Xin,HU You-Kun,GUO Xiao-Dong,TANG Yan,ZHONG Ben-He,LIU Heng.Vacuum-Assisted Synthesis of Fe3(PO4)2·8H2O and Its Influence on Structure,Morphology and Electrochemical Performance of LiFePO4/C[J].Acta Physico-Chimica Sinica,2014,30(5):866-872.
Authors:REN Jian-Xin  HU You-Kun  GUO Xiao-Dong  TANG Yan  ZHONG Ben-He  LIU Heng
Institution:1.College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;2.College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
Abstract:A vacuum-assisted precipitation method was used to synthesize Fe3(PO4)2·8H2O (FP). The FP was then used to synthesize carbon-coated LiFePO4 (LFP/C) particles. The influence of FP on the structure, morphology, and electrochemical performance of LFP was investigated. The X-ray diffraction (XRD) patterns and molar ratio of Fe to P showed that the FP which was produced using a vacuum-assisted method was of high purity and gave highly crystalline, impurity-free LFP. Scanning electron microscopy (SEM) showed that the FP contained undeveloped particles. The undeveloped FP results in uniform LFP/C particles, without agglomeration. Transmission electron microscopy (TEM) showed that the LFP particles were coated with a homogeneous carbon layer. The LFP/C showed excellent discharge capacities of 140, 113, and 100 mAh·g-1 at 1C, 10C, and 20C rates, respectively. The cyclic voltammograms (CVs) of LFP showed a low polarization voltage and sharp redox peaks. The charge-discharge platform curves showed that LFP had an excellent high-rate capability. Electrochemical impedance spectroscopy (EIS) tests showed that the lithium-ion diffusion coefficients of LFP/C produced with and without vacuum assistance were 1.42×10-13 and 4.22×10-14 cm2·s-1, respectively, proving that vacuum assistance can improve the diffusion coefficients of LFP/C.
Keywords:3(PO42·  '  ')  Fe3(PO42·" target="_blank">">Fe3(PO42·    2O'  ')  8H2O" target="_blank">">8H2O  4/C'  ')  LiFePO4/C" target="_blank">">LiFePO4/C  Vacuum-assistance  Precipitation  High rate
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号