首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations
Authors:Angus T Voice  Gary Tresadern  Rebecca M Twidale  Herman van Vlijmen  Adrian J Mulholland
Institution:Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock''s Close, Bristol BS8 1TS UK.; Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse Belgium
Abstract:Ibrutinib is the first covalent inhibitor of Bruton''s tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto–enol tautomerisation step (ΔG = 10.5 kcal mol−1) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.

QM/MM simulations show that covalent modification of BTK by ibrutinib proceeds via an intramolecular proton transfer from C481 to the acrylamide warhead of ibrutinib, followed by covalent bond formation and subsequent keto–enol tautomerisation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号