首页 | 本学科首页   官方微博 | 高级检索  
     


On the kernel size of clique cover reductions for random intersection graphs
Affiliation:1. Hasso Plattner Institute, Potsdam, Germany;2. Friedrich-Schiller-Universität Jena, Germany
Abstract:Covering all edges of a graph by a minimum number of cliques is a well known NP-hard problem. For the parameter k being the maximal number of cliques to be used, the problem becomes fixed parameter tractable. However, assuming the Exponential Time Hypothesis, there is no kernel of subexponential size in the worst-case.We study the average kernel size for random intersection graphs with n vertices, edge probability p, and clique covers of size k. We consider the well-known set of reduction rules of Gramm, Guo, Hüffner, and Niedermeier (2009) [17] and show that with high probability they reduce the graph completely if p is bounded away from 1 and k<clogn for some constant c>0. This shows that for large probabilistic graph classes like random intersection graphs the expected kernel size can be substantially smaller than the known exponential worst-case bounds.
Keywords:Parameterized algorithms  Clique cover  Kernelization  Average case  Random intersection graphs  Erdős–Rényi graphs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号