首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Helical flow of molten polymers in a cylindrical annulus
Authors:Horst H Winter
Institution:(1) Institut für Kunststofftechnologie, University of Stuttgart, Böblinger Straße 70, D-7000 Stuttgart-1, Germany
Abstract:Summary The paper is concerned with an analytical investigation of helical flow of a non-Newtonian fluid through an annulus with a rotating inner cylinder. The shear dependence of viscosity is described by a power law and the temperature dependence by an exponential function.Velocity and temperature profiles, energy input and shear along the stream lines, pressure drop, and torque are presented for the range of input parameters encountered in polymer extrusion.The results of the study can be applied to a mixing element in a screw extruder and for a device to control extrudate temperature and output.Nomenclature a thermal diffusivity m2/s] - b temperature coefficient K–1], see eq. 4] - c heat capacity J/kg K] - h slot width m] - I 1,I 2,I 3 invariants of the rate of deformation tensor, see eq. 5] - k thermal conductivity J/m s K] - l, L = 1/h length of the slot - l T ,l K thermal and kinematic entrance length - m power law exponent, see eq. 3] - M torque m N] - p pressure N/m2] - Pprime dimensionless pressure gradient, see eq. 24] - P Rtheta,P RZ dimensionless components of the shear stress tensor, see eq. 25] and eq. 26] - r, R = r/r wa radial coordinate - r wa, rwi outer and inner radius of annulus m] - t time s]; dwell time in the annulus - T temperature K] - v theta, vr, Vz velocity components m/s] - v 0 angular velocity at inner wall m/s] - 
$$\bar \upsilon _z $$
average velocity inz-direction m/s] - V theta, VR, VZ dimensionless velocity components,v theta/v0, vr/v0, vz/v0 - V z velocity ratio, 
$${{\bar \upsilon _z } \mathord{\left/ {\vphantom {{\bar \upsilon _z } {\upsilon _0 }}} \right. \kern-\nulldelimiterspace} {\upsilon _0 }}$$
helical parameter - Y coordinate inr-direction, see eq. 20] - z, Z = z/h Pe axial coordinate - gamma deformation - 
$$\dot \gamma ,\dot \gamma kl$$
rate of deformation tensor s–1] - eegr apparent viscosity N s/m2], see eq. 3] - thetav dimensionless temperature,b (T – T 0) - theta azimuth coordinate - kappav ratio of radii,r wi/rwa - rhov density kg/m3] - tau, taukl shear stress tensor N/m2] - PHgr fluidity m2w/Nw s], see eq. 4] - Gf Griffith number, see eq. 12] - Pe Péclet number, see eq. 13] - Re Reynolds number, 
$$\bar \upsilon _z h\varrho /\eta $$
- 0 initial state, reference state - infin equilibrium state - e entrance - wi, wa at surface of inner or outer wall - r, R, z, Z, theta coordinates - i, j radial and axial position of nodal point in the grid - k, l tensor components Presented at ldquoEuromech 37rdquo, Napoli 6. 20–23. 1972.With 15 figuresDedicated to Prof. Dr.-Ing. G. Schenkel on his 60th birthday
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号