首页 | 本学科首页   官方微博 | 高级检索  
     


Combinatorial aspects of geometric graphs
Authors:Shang-Hua Teng
Affiliation:

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA

Abstract:As a special case of our main result, we show that for all L> 0, each k-nearest neighbor graph in d dimensions excludes Kh as a depth L minor if h = Ω(Ld). More generally, we prove that the overlap graphs defined by Miller, Teng, Thurston and Vavasis (1993) have this combinatorial property. By a construction of Plotkin, Rao and Smith (1994), our result implies that overlap graphs have “good” cut-covers, answering an open question of Kaklamanis, Krizanc and Rao (1993). Consequently, overlap graphs can be emulated on hypercube graphs with a constant factor of slow-down and on butterfly graphs with a factor of O(log* n) slow-down. Therefore, computations on overlap graphs, such as finite element and finite difference methods on “well-conditioned” meshes and image processing on k-nearest neighbor graphs, can be performed on hypercubic parallel machines with a linear speed-up. Our result, in conjunction with a result of Plotkin, Rao and Smith, also yields a combinatorial proof that overlap graphs have separators of sublinear size. We also show that with high probability, the Delaunay diagram, the relative neighborhood graph, and the k-nearest neighbor graph of a random point set exclude Kh as a depth L minor if h = Ω(Ld/2 log n).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号