首页 | 本学科首页   官方微博 | 高级检索  
     

相对论返波管中击穿现象粒子模拟
引用本文:李姝敏, 李永东, 刘震. 相对论返波管中击穿现象粒子模拟[J]. 强激光与粒子束, 2017, 29: 063001. doi: 10.11884/HPLPB201729.170038
作者姓名:李姝敏  李永东  刘震
作者单位:1.西安交通大学 电子物理与器件教育部重点实验室, 西安71 0049
摘    要:随着相对论返波管(RBWO)输出功率的提高,RBWO内部击穿问题日益突出。击穿过程中产生的等离子体,会降低输出功率并导致脉冲缩短,大大限制了RBWO的输出单脉冲能量。采用3维粒子模拟,在反射器、慢波结构、提取腔局部区域产生等离子体,建立了RBWO单点击穿及多点击穿模型,获得了等离子体产生的区域和密度对微波输出性能的影响规律。模拟结果表明,输出微波功率随等离子体密度增加而迅速降低,多点击穿相对于单点击穿情况更容易引起输出微波脉冲提前终止,且发射器击穿产生的等离子体效应更为明显。

关 键 词:相对论返波管   击穿   等离子体   粒子模拟
收稿时间:2017-02-13
修稿时间:2017-03-25

Particle-in-cell simulation of field breakdown in a relativistic backward wave oscillator
Li Shumin, Li Yongdong, Liu Zhen. Particle-in-cell simulation of field breakdown in a relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2017, 29: 063001. doi: 10.11884/HPLPB201729.170038
Authors:Li Shumin  Li Yongdong  Liu Zhen
Affiliation:1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education,Xi’an Jiaotong University,Xi’an 710049,China
Abstract:With the increase of output microwave power, the internal field breakdown in a relativistic backward-wave oscillator (RBWO) gets gradually severe. The plasma generated by the field breakdown would lower the attainable output power and pulse width, which greatly limits the single pulse energy. Using a 3-dimensional particle-in-cell (PIC) simulation, the models involving single or several spot breakdown in the reflector, extractor and slow wave structure are built. The plasma effects existing in different locations or having different density are recognized. As demonstrated in the simulation, the output microwave power decreases rapidly as the plasma density increases, breakdown simultaneously occurring at several locations would result in pulse shortening more intensely in contrast to a single spot breakdown, and the easiest plasma effect exists in the breakdown of the reflector.
Keywords:relativistic backward wave oscillator  breakdown  plasma  PIC simulation
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号