首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration
Authors:Kirk Vance  Akash Dakhane  Gaurav Sant  Narayanan Neithalath
Institution:1. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
2. Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA, USA
3. California Nanosystems Institute, University of California Los Angeles, Los Angeles, CA, USA
Abstract:This paper reports the influence of activator type and concentration on the rheological properties of alkali-activated fly ash suspensions. A thorough investigation of the rheological influences (yield stress and plastic viscosity) of several activator parameters, including: (i) the cation type and concentration of alkali hydroxide and (ii) the alkali-to-binder ratio (n) and silica modulus (Ms), and (iii) the volume of the activation solution, on the suspension rheology is presented. The results indicate a strong dependence on the cation and its concentration in the activation solution. The viscosity of the activation solution and the volumetric solution-to-powder ratio are shown to most strongly influence the plastic viscosity of the suspension. The suspension yield stress is predominantly influenced by the changes in fly ash particle surface charge and the ionic species in the activator. A shift from non-Newtonian to Newtonian flow behavior is noted in the case of silicate-based suspensions for Ms?≤?1.5. This behavior, which is not observed at higher MS values, or when the fly ash is dispersed in hydroxide solutions or pure water, is hypothesized to be caused by colloidal siliceous species present in this system, or surface charge effects on the fly ash particles. Comparisons of the rheological response of alkali-activated suspensions to that of portland cement-water suspensions are also reported.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号