首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assemblies of supramolecular porphyrin dimers in pentagonal and hexagonal arrays exhibiting light-harvesting antenna function
Authors:Hajjaj Fatin  Yoon Zin Seok  Yoon Min-Chul  Park Jaehong  Satake Akiharu  Kim Dongho  Kobuke Yoshiaki
Institution:Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan.
Abstract:Porphyrin-based supramolecular macrocyclic arrays were synthesized as mimics of photosynthetic light-harvesting (LH) antennae. Pentameric and hexameric macrocyclic porphyrin arrays EP5 and EP6 were constructed by complementary coordination of m-bis(ethynylene)phenylene-linked zinc-imidazolylporphyrin Zn-EP-Zn. The proton NMR spectra of noncovalently linked N-EP5 and N-EP6 indicate fast rotation of the porphyrin moieties along the ethyne axis. These macrocycles were covalently linked and identified as C-EP5 (6832 Da) and C-EP6 (8199 Da) by mass spectrometry. Fluorescence quantum yields of C-EP2 (10.0%), C-EP5 (10.1%), and C-EP6 (11.0%), even larger than that of the unit coordination dimer C-EP1 (9.3%), were significantly increased from those of the series without the ethynylene linkage. The order of increasing fluorescence quantum yields was parallel to that of decreasing fluorescence lifetimes (C-EP1 (1.65 ns), C-EP2 (1.45 ns), C-EP5 (1.42 ns), and C-EP6 (1.38 ns)), indicating that the radiative decay rate kF increased relative to the other decay rates with an increase in the number of ring components. Based on the exciton-exciton annihilation and anisotropy depolarization times, the excitation energy hopping (EEH) times in these macrocyclic systems were obtained as 21 ps for C-EP5 and 12.8 ps for C-EP6. EEH times depend strongly on the orientation factor of the component transition dipoles in the macrocyclic arrays. The hexagonal macrocyclic array with an orientation of better transition dipole coupling resulted in faster EEH time compared to the pentagonal one.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号