首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of multivariate calibration models for glucose,urea, and lactate from near-infrared and Raman spectra
Authors:Min Ren  Mark A Arnold
Institution:(1) Department of Chemistry and Optical Science and Technology Center, University of Iowa, Iowa City, IA 52242, USA
Abstract:Partial least-squares (PLS) calibration models have been generated from a series of near-infrared (near-IR) and Raman spectra acquired separately from sixty different mixed solutions of glucose, lactate, and urea in aqueous phosphate buffer. Independent PLS models were prepared and compared for glucose, lactate, and urea. Near-IR and Raman spectral features differed substantially for these solutes, with Raman spectra enabling greater distinction with less spectral overlap than features in the near-IR spectra. Despite this, PLS models derived from near-IR spectra outperformed those from Raman spectra. Standard errors of prediction were 0.24, 0.11, and 0.14 mmol L−1 for glucose, lactate, and urea, respectively, from near-IR spectra and 0.40, 0.42, and 0.36 mmol L−1 for glucose, lactate, and urea, respectively, from Raman spectra. Differences between instrumental signal-to-noise ratios were responsible for the better performance of the near-IR models. The chemical basis of model selectivity was examined for each model by using a pure component selectivity analysis combined with analysis of the net analyte signal for each solute. This selectivity analysis showed that models based on either near-IR or Raman spectra had excellent selectivity for the targeted analyte. The net analyte signal analysis also revealed that analytical sensitivity was higher for the models generated from near-IR spectra. This is consistent with the lower standard errors of prediction.
Keywords:Near-infrared spectroscopy  Raman spectroscopy  Noninvasive glucose sensing  Multivariate calibration
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号