首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion and conductivity properties of cerium niobate
Institution:1. Department of Materials, Imperial College London, London, SW7 2BP, United Kingdom;2. Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193, Portugal;1. Laboratoire de physique des matériaux: Structure et Propriétés, Unité de service commun spectromètre de surfaces, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;2. Département Education et Enseignements, Institut Supérieur des Sciences Humaines de Jendouba, Université Jendouba, Avenue de UMA, 8189, Jendouba Nord, Tunisia;3. Laboratoire de Physique des Matériaux Lamellaires et Nanomatériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, 7021, Tunisia;4. Laboratoire de Physique des Matériaux: Structure et Propriétés, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, 7021, Tunisia;1. Department of Applied Science, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India;2. Department of Physics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India;3. Center of Material Sciences, University of Allahabad, Prayagraj, 211002, India;1. Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Rd, Mail stop 55-107, Berkeley, CA 94720, USA;2. Department of Chemical Engineering and Material Science, Michigan State University, 428 South Shaw Lane, East Lansing, MI 48824, USA;3. Surface Engineering and Precision Institute, Cranfield University, College Rd, Bedford MK43 0AL, UK;1. National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;2. International Center for Materials Nanoarchitectonics, MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;3. Institute for Metal Physics, N.A.S. Ukraine, 36 Vernadsky Blvd, Kyiv 03142, Ukraine
Abstract:The tracer diffusion coefficient (D⁎) and the surface exchange coefficient (k⁎) provide vital information for materials used in high temperature electrochemical devices (e.g. solid oxide fuel cells or oxygen permeation membranes). These values were established for the high temperature tetragonal scheelite structured CeNbO4+δ (monoclinic fergusonite at room temperature), which is of interest due to its wide range of oxygen stoichiometries varying from stoichiometric CeNbO4 to CeNbO4.33. Measurements of D⁎ and k⁎ were performed by the isotopic exchange/line scan technique with SIMS (secondary ion mass spectrometry) used to determine 18O stable isotope depth distribution. This process was carried out between temperatures of 1073 K and 1173 K at 500 mbar of 16O/18O. These measurements were then correlated with oxide ion conductivity data previously determined from four probe d.c. and e.m.f. measurements using the Nernst–Einstein relation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号