首页 | 本学科首页   官方微博 | 高级检索  
     检索      


3D Numerical Simulation of a Laminar Experimental SWQ Burner with Tabulated Chemistry
Authors:A Heinrich  S Ganter  G Kuenne  C Jainski  A Dreizler  J Janicka
Institution:1.Institute of Energy and Power Plant Technology,TU Darmstadt,Darmstadt,Germany;2.Institute of Reactive Flows and Diagnostics,TU Darmstadt,Darmstadt,Germany
Abstract:Flame-wall interaction (FWI) plays an important role in enclosed combustion systems. For avoiding the complexity of close to reality combustors, in this study an atmospheric premixed V-shaped flame interacting with an isothermal cold wall in a side wall quenching (SWQ) configuration is investigated. A stoichiometric methane/air mixture is used as fuel. A three-dimensional (3D) numerical simulation, which resolves all flow structures is combined with a tabulated chemistry approach (flamelet generated manifold, FGM). Results are compared with experimental data and two-dimensional simulations. The FGM approach is a suitable trade-off between computationally expensive detailed chemistry simulations and over simplified single step mechanisms. 2D simulations are used to investigate the influence of the uncertainty of the wall temperature, to show that the resolution in 3D is sufficient and that the influence of the flame thickening on the wall heat fluxes can be determined. Our results show that the 3D FGM approach is in close agreement to experimentally obtained flow and temperature fields. The dimensionless wall heat flux and Péclet number matches the expected values of 0.16 and 7, respectively. However, during FWI the measured CO mole fractions are not reproduced accurately showing that the transported variables in the present approach of tabulated chemistry do not recover premixed flame structures near walls.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号