首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study on the mechanism for the thermal rearrangement reactions of 2‐silylethyl acetate H3SiCH2CH2OCOCH3
Authors:Zhongfeng Jia  Shengyu Feng  Enfeng Song  Wenyan Sun  Lixiao Cong
Institution:School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
Abstract:The thermal rearrangement mechanisms of 2‐silylethylacetate H3SiCH2CH2OOCCH3 were investigated by ab initio molecular orbital theory for the first time. All structures of reactant, transition states, and products were located and fully optimized at the B3LYP/6‐311+G(d, p) levels, and harmonic vibrational frequencies for the involved stationary points on the potential energy surface were obtained. The reaction pathways were analyzed and confirmed by intrinsic reaction coordinate (IRC) calculations. Furthermore, atomic charges were determined by using the natural bond orbital (NBO) analysis. The calculational results show that H3SiCH2CH2OOCCH3 can rearrange thermally in two ways. One is 1,3] rearrangement (Reaction A), in which silyl group transfers from carbon to oxygen(in C? O? C) via a four‐membered ring transition state, forming silyl acetate and ethylene, the other way, 1,5] rearrangement (Reaction B), happens with transferring of silyl group from carbon to oxygen (in C?O) via a six‐membered ring transition state, forming the same products as in Reaction A. The energy barriers of the Reactions A and B were calculated to be 188.9 and 191.6 kJ/mol at the B3LYP/6‐311+G(d,p) levels, respectively. Changes in thermodynamic functions (ΔS, ΔH, and ΔG), equilibrium constant K(T), as well as preexponential factor A(T), and reaction rate constant k(T) in Eyring transition state theory were calculated over a temperature range of 200–1600 K, and then thermodynamic and kinetic properties of the reactions were analyzed. It can be suggested that Reactions A and B are noncompetitive, and both happen only at elevated temperature. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009
Keywords:thermal rearrangement  mechanisms  polysiloxane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号