首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory
Authors:M Mohammadimehr  M J Farahi  S Alimirzaei
Institution:Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-53153, Iran
Abstract:In this research, vibration and wave propagation analysis of a twisted microbeam on Pasternak foundation is investigated. The strain-displacement relations (kinematic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at microscale. Finally, using an energy method and Hamilton’s principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave propagation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is inversely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.
Keywords:strain gradient theory (SGT)  vibration and wave propagation analysis  rate of twist angle  twisted micro-beam  
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号