首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Particle size effect on thermal conductivity of AlN films with embedded diamond particles
Authors:T S Pan  Y Zhang  J Huang  M Gao  Y Lin
Institution:1. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
Abstract:Fabricating composite thin films is an effective and economic solution to improve the thermal performance of the films. The diamond particles of different sizes were successfully embedded in AlN thin films by a chemical solution approach, which was confirmed by scanning electron microscope, x-ray diffraction analysis and x-ray photoelectron spectroscopy. The thermal properties of the films embedded with different diamond particles were studied by using a 3-omega method, which was observed to be strongly dependent on the particle size. A 19 % enhancement in thermal conductivity can be achieved by embedding diamond particles of 1-μm radius in AlN thin films. However, the thermal conductivity decreases after embedding with 10-nm radius diamond particles. The results are discussed with high volume model, which confirms that the interface thermal resistance between the embedded materials and the films plays an important role in determining the thermal conductivity of the as-grown carbon material embedded AlN films.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号