首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes
Authors:E Ferapontova Elena  Gorton Lo
Institution:Group of Bioinformatics, Weblab, IT Centre, Voskhod 26a, Novosibirsk 630102, Russia. ferapontova@nsk.fio.ru
Abstract:Direct electrochemistry of heme multicofactor-containing enzymes, e.g., microbial theophylline oxidase (ThOx) and D-fructose dehydrogenase (FDH) from Gluconobacter industrius was studied on alkanethiol-modified gold electrodes and was compared with that of some previously studied complex heme enzymes, specifically, cellobiose dehydrogenase (CDH) and sulphite oxidase (SOx). The formal redox potentials for enzymes in direct electronic communication varied for ThOx from -112 to -101 mV (vs. Ag|AgCl), at pH 7.0, and for FDH from -158 to -89 mV, at pH 5.0 and pH 4.0, respectively, on differently charged alkanethiol layers. Direct and mediated by cytochrome c electrochemistry of FDH correlated with the existence of two active centres in the protein structure, i.e., the heme and the pyrroloquinoline quinone (PQQ) prosthetic groups. The effect of the alkanethiols of different polarity and charge on the surface properties of the gold electrodes necessary for adsorption and orientation of ThOx, FDH, CDH and SOx, favourable for the efficient electrode-enzyme electron transfer reaction, is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号