首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Residual conductance of correlated one-dimensional nanosystems: A numerical approach
Authors:Email author" target="_blank">R?A?MolinaEmail author  P?Schmitteckert  D?Weinmann  R?A?Jalabert  G-L?Ingold  J-L?Pichard
Institution:(1) CEA/DSM, Service de Physique de lrsquoÉtat Condensé, Centre drsquoÉtudes de Saclay, 91191 Gif-sur-Yvette, France;(2) Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany;(3) Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 (CNRS-ULP), 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France;(4) Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86135 Augsburg, Germany;(5) Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 95031 Cergy-Pontoise Cedex, France
Abstract:We study a method to determine the residual conductance of a correlated system by means of the ground-state properties of a large ring composed of the system itself and a long non-interacting lead. The transmission probability through the interacting region, and thus its residual conductance, is deduced from the persistent current induced by a flux threading the ring. Density Matrix Renormalization Group techniques are employed to obtain numerical results for one-dimensional systems of interacting spinless fermions. As the flux dependence of the persistent current for such a system demonstrates, the interacting system coupled to an infinite non-interacting lead behaves as a non-interacting scatterer, but with an interaction dependent elastic transmission coefficient. The scaling to large lead sizes is discussed in detail as it constitutes a crucial step in determining the conductance. Furthermore, the method, which so far had been used at half filling, is extended to arbitrary filling and also applied to disordered interacting systems, where it is found that repulsive interaction can favor transport.Received: 19 January 2004, Published online: 18 June 2004PACS: 73.23.-b Electronic transport in mesoscopic systems - 71.10.-w Theories and models of many-electron systems - 05.60.Gg Quantum transport - 73.63.Nm Quantum wires
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号