首页 | 本学科首页   官方微博 | 高级检索  
     


On data reduction for dynamic vector bin packing
Affiliation:Huawei Technologies Co., Ltd., Novosibirsk, Russian Federation
Abstract:We study a dynamic vector bin packing (DVBP) problem. We show hardness for shrinking arbitrary DVBP instances to size polynomial in the number of request types or in the maximal number of requests overlapping in time. We also present a simple polynomial-time data reduction algorithm that allows to recover (1+ε)-approximate solutions for arbitrary ε>0. It shrinks instances from Microsoft Azure and Huawei Cloud by an order of magnitude for ε=0.02.
Keywords:Approximation & heuristics  Parameterized complexity  Lossy kernelization  Resource allocation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号