首页 | 本学科首页   官方微博 | 高级检索  
     


Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene
Authors:Jing Luo  Hongyan Zhang  Sisi Jiang  Jinqiang Jiang  Xiaoya Liu
Affiliation:1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
Abstract:We have developed a non-enzymatic glucose sensor by using a composite prepared from copper nanoparticles (CuNPs) and graphene which can be prepared by simple 1-step electrochemical reduction using graphene oxide (GO) and copper ion as the starting materials. The GO is electrochemically reduced to graphene at a voltage of ?1.5 V, and this is accompanied by the simultaneous formation of CuNPs on the surface of the graphene. This novel nanocomposite combines the advantages of graphene and of CuNPs and displays good electrocatalytic activity toward glucose in alkaline media. The performance of the respective glucose electrode was evaluated by amperometric experiments and revealed a fast response (<2 s), a low detection limit (200 nM), and high sensitivity (607 μA mM?1). The sensor also exhibits good reproducibility and very good specificity for glucose over ascorbic acid, dopamine, uric acid, fructose, lactose and sucrose.
Figure
(A) CVs of Cu NPs/graphene electrode (a), graphene electrode (b),and Cu/GC electrode (c) in 0.1 M NaOH solution with 0.5 mM glucose; (B) The response of the Cu NPs/graphene electrode to successive addition of glucose from 5 μM to 0.2 mM.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号