首页 | 本学科首页   官方微博 | 高级检索  
     


Ring structures on groups of arithmetic functions
Authors:Jesse Elliott
Affiliation:California State University, Channel Islands, One University Drive, Camarillo, CA 93012, USA
Abstract:Using the theory of Witt vectors, we define ring structures on several well-known groups of arithmetic functions, which in another guise are formal Dirichlet series. The set of multiplicative arithmetic functions over a commutative ring R is shown to have a unique functorial ring structure for which the operation of addition is Dirichlet convolution and the operation of multiplication restricted to the completely multiplicative functions coincides with point-wise multiplication. The group of additive arithmetic functions over R also has a functorial ring structure. In analogy with the ghost homomorphism of Witt vectors, there is a functorial ring homomorphism from the ring of multiplicative functions to the ring of additive functions that is an isomorphism if R is a Q-algebra. The group of rational arithmetic functions, that is, the group generated by the completely multiplicative functions, forms a subring of the ring of multiplicative functions. The latter ring has the structure of a Bin(R)-algebra, where Bin(R) is the universal binomial ring equipped with a ring homomorphism to R. We use this algebra structure to study the order of a rational arithmetic function, as well the powersfα for α∈Bin(R) of a multiplicative arithmetic function f. For example, we prove new results about the powers of a given multiplicative arithmetic function that are rational. Finally, we apply our theory to the study of the zeta function of a scheme of finite type over Z.
Keywords:11A25   13K05   14G10   30B50
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号