Traveling Internal Plane-wave Synthesis (TIPS) for uniform B1 in high field MRI |
| |
Affiliation: | 1. Department of Radiology, Memorial Sloan Kettering Cancer Center;2. Department of Medical Physics, Memorial Sloan Kettering Cancer Center;3. Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center;4. Brain Tumor Center, Memorial Sloan Kettering Cancer Center;5. Department of Diagnostics, Imaging and Biomedical Technologies, GE Global Research |
| |
Abstract: | A new target-field approach to generating uniform radio frequency (RF) fields within the human body for high field MRI is described. The method involves producing a set of external fields which, after interaction with a dielectric object, superimpose to produce a traveling plane wave, exposing all spins to the same RF amplitude (B1) over a cycle of the harmonic field. Conceptually this is similar to conventional RF shimming, but uses a different RF source design, input data, and objective function. The method requires a detailed knowledge of the coupling between exterior field modes, produced by an array of RF sources, and field modes within the body. Given an estimate of the coupling matrix, the linear superposition of external modes that produces a desired internal target field can be determined. The new method is termed Traveling Internal Plane-wave Synthesis (TIPS). A simple design of a coil array is described that can, in principle, generate the required field modes. Simulations demonstrate that radio frequency magnetic fields of nearly uniform (< 1% variation) magnitude can be produced within dielectric objects larger than a wavelength in size. If the dielectric medium has non-zero conductivity, traveling waves are attenuated as they traverse the object, but field uniformity within planar slices is preserved. For general 3D imaging, a superposition of plane waves can provide field focusing to balance conductive losses, thereby achieving nearly uniform-magnitude B1+ magnetic fields over a volume of interest. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|