首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of myocardial oxygenation in heart failure using blood-oxygen-level-dependent T2* magnetic resonance imaging: Comparison with cardiopulmonary exercise test
Institution:1. Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women''s Medical University, Tokyo, Japan;2. Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan;3. Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan;4. Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan;5. Department of Marketing Division, Philips Healthcare Japan, Tokyo, Japan;1. Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA;2. Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA;3. Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA;4. UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, USA;5. Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA;1. Department of Radiology, Weill Cornell Medical College, New York, NY, United States;2. Department of Neurology, Weill Cornell Medical College, New York, NY, United States;1. Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, United States;2. Department of Surgery, Section of Cardiothoracic Surgery, The University of Chicago, Chicago, IL, United States;3. Department of Radiology, The University of Chicago, Chicago, IL, United States;4. Philips, Gainesville, FL, United States.;1. Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan;2. Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan;3. Division of Radiology, and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo;4. Philips Electronics Japan, Tokyo, Japan;5. Medical Imaging Laboratory, Graduate School of Information Sciences, Hiroshima City University
Abstract:PurposeQuantification of myocardial oxygenation (MO) in heart failure (HF) has been less than satisfactory. This has necessitated the use of invasive techniques to measure MO directly or to determine the oxygen demand during exercise using the cardiopulmonary exercise (CPX) test. We propose a new quantification method for MO using blood-oxygen-level-dependent (BOLD) myocardial T2* magnetic resonance imaging (M-T2* MRI), and investigate its correlation with CPX results.MethodsThirty patients with refractory HF who underwent cardiac MRI and CPX test for heart transplantation, and 24 healthy, age-matched volunteers as controls were enrolled. M-T2* imaging was performed using a 3-Tesla and multi-echo gradient-echo sequence. M-T2* was calculated by fitting the signal intensity data for the mid-left ventricular septum to a decay curve. M-T2* was measured under room-air (T2*-air) and after inhalation of oxygen for 10 min at a flow rate of 10 L/min (T2*-oxy). MO was defined as the difference between the two values (ΔT2*). Changes in M-T2* at the two conditions and ΔT2* between the two groups were compared. Correlation between ΔT2* and CPX results was analyzed using the Pearson coefficient.ResultsT2*-oxy was significantly greater than T2*-air in patients with HF (29.9 ± 7.3 ms vs. 26.7 ± 6.0 ms, p < 0.001), whereas no such difference was observed in controls (25.5 ± 4.0 ms vs. 25.4 ± 4.4 ms). ΔT2* was significantly greater for patients with HF than for controls (3.2 ± 4.5 ms vs. -0.1 ± 1.3 ms, p < 0.001). A significant correlation between ΔT2* and CPX results (peak VO2, r = ? 0.46, p < 0.05; O2 pulse, r = ? 0.54, p < 0.005) was observed.ConclusionΔT2* is increased T2*-oxy is greater in patients with HF, and is correlated with oxygen metabolism during exercise as measured by the CPX test. Hence, ΔT2* can be used as a surrogate marker of MO instead of CPX test.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号