首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental matrix isolation study and quantum-mechanics-based normal-coordinate analysis of the anharmonic infrared spectrum of picolinic acid N-oxide
Authors:Szczepaniak Krystyna  Person Willis B  Hadzi Dusan
Institution:Department of Chemistry, University of Florida, P O Box 117200, Gainesville, Florida 32611, USA.
Abstract:This work is, according to our knowledge, the first experimental matrix isolation study of a molecular system with a very short and strong intramolecular OH...O hydrogen bond. It also includes a satisfying interpretation of its entire infrared spectrum. The interpretation relies on the calculation at the DFT/B3LYP/6-31G(d,p) level of the harmonic spectrum and of the anharmonic relaxed potential energy for the stretching motion of the hydrogen-bonded proton, used with our recently modified quantum-mechanics-based normal-coordinate analysis. An important observation about the anharmonic spectrum obtained from this procedure is that the OH stretch coordinate contributes to several normal modes, mixing extensively with other in-plane internal coordinates, in particular OH-bending and C=O-stretching. The two intense normal modes with the largest contributions from the OH-stretching coordinate to the potential energy distribution and to the intensity are located near 1700 and 1500 cm(-1). A calculated anharmonic spectrum obtained from this procedure agrees with the experimental spectrum (frequencies and intensity distribution), within the limits of the estimated uncertainties for the calculation and experiment, allowing the interpretation of the latter. The agreement for the frequencies is about 1-3%. The anharmonic spectrum calculated using the anharmonic keyword in Gaussian 03w is not in satisfactory agreement with experiment insofar as the OH-stretching mode is concerned.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号