首页 | 本学科首页   官方微博 | 高级检索  
     

基于激光诱导荧光的常见机油快速识别方法
引用本文:刘晓华,陈思颖,张寅超,郭磐,陈和,牟涛涛. 基于激光诱导荧光的常见机油快速识别方法[J]. 光谱学与光谱分析, 2014, 34(8): 2148-2151. DOI: 10.3964/j.issn.1000-0593(2014)08-2148-04
作者姓名:刘晓华  陈思颖  张寅超  郭磐  陈和  牟涛涛
作者单位:北京理工大学光电学院光电成像与信息工程研究所,北京 100081
基金项目:国家自然科学基金项目(61178072)资助
摘    要:基于激光诱导荧光光谱原理,提出一种常见机油的快速识别方法。利用激光器发射波长为355 nm的紫外激光,诱导九种常见机油样品发射荧光,共采集450组荧光光谱数据,其中360组数据用于分类训练,90组数据用于识别。分析发现不同机油的荧光光谱特征有明显差异,利用主成分分析结合聚类分析法实现了对90组待识别光谱数据的快速识别,识别率可达97.8%。实验证明,激光诱导荧光光谱结合多元分析可以实现不同机油的快速识别与检测。

关 键 词:机油  激光诱导荧光  主成分分析  聚类分析法   
收稿时间:2014-01-14

Rapid Recognition of Common Machine Oils Based on Laser Induced Fluorescence
LIU Xiao-hua,CHEN Si-ying,ZHANG Yin-chao,GUO Pan,CHEN He,MU Tao-tao. Rapid Recognition of Common Machine Oils Based on Laser Induced Fluorescence[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2148-2151. DOI: 10.3964/j.issn.1000-0593(2014)08-2148-04
Authors:LIU Xiao-hua  CHEN Si-ying  ZHANG Yin-chao  GUO Pan  CHEN He  MU Tao-tao
Affiliation:Photoelectric Imaging and Information Engineering Research Institute, School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:A rapid recognition method of common engine oils, based on the principle of laser induced fluorescence (LIF), is proposed in the present paper. A 355 nm ultraviolet laser is used to induce fluorescence emission of 9 kinds of common machine oil samples. In total 450 groups of fluorescence spectral data are collected, of which 360 groups of data are used for classification training and 90 sets of data for identification. It was found that the fluorescence spectra of engine oils are distinct from each other visibly. The rapid identification of 90 groups of data is realized by using clustering analysis combined with principal component analysis. The recognition rate could reach up to 97.8%. Experiment demonstrated that the fast identification of diverse engine oils could be realized by using LIF combined with multivariate analysis method.
Keywords:Engine oil  Laser induced fluorescence  Principal components analysis  Clustering analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号