首页 | 本学科首页   官方微博 | 高级检索  
     

LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选
引用本文:樊书祥,黄文倩,李江波,赵春江,张保华. LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选[J]. 光谱学与光谱分析, 2014, 34(8): 2089-2093. DOI: 10.3964/j.issn.1000-0593(2014)08-2089-05
作者姓名:樊书祥  黄文倩  李江波  赵春江  张保华
作者单位:1. 西北农林科技大学机械与电子工程学院,陕西 杨凌 712100
2. 北京市农林科学院,北京农业智能装备技术研究中心,北京 100097
基金项目:国家科技支撑计划资助项目(2013BAD19B02)和2012年北京市农林科学院博士后基金资助
摘    要:为提高梨可溶性固形物含量(soluble solids content,SSC)的近红外光谱模型的精度和稳定性,以160个梨样品为实验对象,分别对原始光谱、多元散射校正(MSC)和标准正态变量变换(SNV)处理后的光谱,经无信息变量消除算法(UVE)挑选后,再结合遗传算法(GA)和连续投影算法(SPA),筛选梨可溶性固形物的近红外光谱特征波长。将筛选后的波长作为输入变量建立梨可溶性固形物的最小二乘支持向量机(LS-SVM)模型。结果表明经过SNV-UVE-GA-SPA从全波段3112个波长中筛选出的30个特征波长建立的梨可溶性固形物LS-SVM模型效果最好,该模型的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.956和0.271。该模型简单可靠,预测效果好,能满足梨的可溶性固形物含量的快速检测,为在线检测和便携式设备开发提供了理论基础。

关 键 词:近红外光谱  特征波长  最小二乘支持向量机  可溶性固形物    
收稿时间:2013-09-17

Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM
FAN Shu-xiang,HUANG Wen-qian,LI Jiang-bo,ZHAO Chun-jiang,ZHANG Bao-hua. Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2089-2093. DOI: 10.3964/j.issn.1000-0593(2014)08-2089-05
Authors:FAN Shu-xiang  HUANG Wen-qian  LI Jiang-bo  ZHAO Chun-jiang  ZHANG Bao-hua
Affiliation:1. College of Mechanical and Electronic Engineering, Northwest Agricultural and Forestry University, Yangling 712100, China2. Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Abstract:To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40).Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis. A combination of genetic algorithm (GA) and successive projections algorithm (SPA) was proposed to select most effective wavelengths after uninformative variable elimination (UVE) from original spectra, SNV pretreated spectra and MSC pretreated spectra respectively. The selected variables were used as the inputs of least squares-support vector machine (LS-SVM) model to build models for determining the SSC of pear. The results indicated that LS-SVM model built using SNVE-UVE-GA-SPA on 30 characteristic wavelengths selected from full-spectrum which had 3112 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.956, 0.271 for SSC. The model is reliable and the predicted result is effective. The method can meet the requirement of quick measuring SSC of pear and might be important for the development of portable instruments and online monitoring.
Keywords:NIR spectroscopy  Characteristic wavelengths  Least squares-support vector machine  Soluble solids content  Pear
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号